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• The emergence of deep learning applications and frameworks
– Early (2014) frameworks used a single fast GPU

– Today, parallel training on multiple GPUs and multiple nodes is being supported by most 
frameworks

– A lot of fragmentation in the efforts (Horovod, MPI, NCCL, Gloo, gRPC, etc.)

• The development of HPC supports
– Multi-core/many-core technologies

– Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, RoCE, and 
Slingshot)

– Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

– Accelerators (NVIDIA GPGPUs, AMD GPUs, Habana Gaudi)

Introduction: Modern HPC for DL Frameworks
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• MPI: communication paradigm used in HPC systems to enable communication across 
processes, modern GPUs, and new network interconnect.

– GPU-aware MPI libraries: facilitate direct GPU-to-GPU data transfers

• Vendor-specific communication libraries: GPU vendors provide it to attain superior collective 
communication performance, particularly tailored for deep learning (DL) applications.

– E.g.: NVIDIA Collective Communication Library (NCCL), ROCm Collective Communication 
Library (RCCL), Habana Collective Communications Library (HCCL), Microsoft Collective 
Communication Library (MSCCL)

• Application developers are often responsible for porting or updating their codes to utilize 
these vender-communication APIs.

– It requires extensive knowledge and can lead to decreased productivity and potential 
inconsistencies across various hardware platforms.

Introduction:
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• Why not rely solely on traditional MPI libraries or vendor-specific 
communication libraries (CCLs)?

• CCLs have superior performance for larger message transfers

– Higher overheads for small messages

• High efforts for porting previous designs to use CCLs

– CCLs do not adhere to the MPI standard

– Consider the emergence of new architectures and evolving 
communication libraries

Motivation

Comparison of MPI and NCCL Allreduce latency 
using 32 GPUs (4 nodes) on a DGX A100 system.

Comparison of MPI and RCCL Allgather latency 
using 8 GPUs (4 nodes) on an AMD GPU system.
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• MPI-xCCL: a unified, portable communication interface that supports various vendor accelerators, enabling 
users and developers to dynamically leverage the best features from diverse implementations in an 
application-transparent manner

• User perspective:

– Utilize different CCLs across architectures without modifying their code and with standard MPI APIs.

– Manage the complexities of underlying CCL APIs and logic, e.g.: stream handling

– Support automatic error handling , e.g.: falling back to traditional MPI communication 

– Include common MPI non-blocking collective operations

– Optimize performance across a wide range of message sizes by using the hybrid designs 

– Take advantage of the same features and functionalities provided by pure CCLs 

• Developer perspective:

– Provide a unified layer for implementing collective operations, eliminating the need to customize 
algorithms and functions for each new CCL

– Provide a scalable design that can be easily extended to support upcoming architectures and CCLs

Motivation (cont’d)
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• Given the success of NCCL library, other venders have proposed 
very similar communication APIs with compatible functionalities.

– RCCL/MSCCL: keep using the prefix to nccl

– HCCL: by changing the prefix to hccl

• xCCL abstraction layer 
enables us to use a single 
API to access third-party 
libraries.

• A high level of adaptability 
and productivity by 
aggregating existing APIs

xCCL Abstraction Layer for GPU-aware MPI
Category NCCL/RCCL/MSCCL HCCL

Communicator 
Creation

ncclCommInitRank hcclCommInitRank

ncclCommDestroy hcclCommDestroy

Collective 
Communication

ncclBroadcast hcclBroadcast

ncclAllReduce hcclAllreduce

ncclReduce hcclReduce

ncclReduceScatter hcclReduceScatter

ncclAllGather hcclAllGather

Group Calls
ncclGroupStart hcclGroupStart

ncclGroupEnd hcclGroupEnd

Point-to-point 
Communication

ncclSend hcclSend

ncclRecv cclRecv

Types

ncclComm_t hcclComm_t

ncclDataType_t hcclDataType_t

ncclRedOp_t hcclRedOp_t

Datatypes

ncclFloat hcclFloat

ncclInt32 hcclInt32

ncclUint8 hcclUint8

Reduce Operations

ncclSum hcclSum

ncclProd hcclProd

ncclMax hcclMax

   MPI Middleware

   Accelerators NVIDIA GPUs AMD GPUs Habana HPUs

  xCCL Abstraction Layer 

   Applications 

  xCCL
  APIs HCCL APIsRCCL APIs

Device Buffer IdentifyDatatype Support

Reduce Operation Support Communicator Maintenance

Synchronization

Point-to-point CommunicationCollectives Communication

NCCL/MSCCL APIs
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• 5 built-in collective communication functions:
– Broadcast: ncclBroadcast/hcclBroadcast

– AllReduce: ncclAllreduce/hcclAllreduce

– Reduce: ncclReduce/hcclReduce

– ReduceScatter: ncclReduceScatter/hcclReduceScatter

– AllGather: ncclAllGather/hcclAllGather

• Map these NCCL and HCCL APIs to our xCCL APIs and directly call those
– E.g.: xcclAllReduce is created on top of ncclAllReduce/hcclAllReduce

• Checking mechanism for the supported datatype and reduce operations
– Note that HCCL support less datatype currently (only support float currently)

Built-in Collective Functions
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• The other collective calls are simple send-recv-based communications
– E.g.: Gather, Scatter, Alltoall

• No vendor-optimized built-in implementation, typically users used to have to 
implement it on their own.

– Use ncclGroupStart, ncclGroupEnd, ncclSend, and ncclRecv to implement 
by their own

• We implemented those functions with our high-level xCCL APIs and provided 
hooks in MPI runtimes

– Alltoall, Alltoallv, Gather, Gatherv, Scatter, Scatterv, and Allgatherv

Customized Send-recv-based Collective Functions
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• Support  MPI_Isend and MPI_Irecv (MPI_Wait)

• Support non-blocking collective operations
– E.g.: MPI_Iallreduce

• The xCCL communication calls are non-blocking operations
– Remove the synchronization and defer it until the MPI_Wait stage

– Maintain the necessary information between the non-blocking and wait operations

Non-blocking Designs
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• Hybrid designs enable users to leverage both vendor-optimized 
collective communication libraries and the existing MPI 
implementations.

– In fact, modern MPI libraries utilize different protocols and 
algorithms according to different conditions, such as system 
architectures, MPI operations, and message sizes.

• With the xCCL Abstraction Layer designs, each operation can be 
easily encapsulated into one of the MPI algorithms and be called 
as one of the regular MPI implementations in the tuning tables.

• Tune the tuning tables offline, and during runtime, the hybrid 
designs select the most optimal solution from the tuning tables.

Hybrid Designs

Comparison of MPI and NCCL Allreduce latency 
using 32 GPUs (4 nodes) on a DGX A100 system.

Comparison of MPI and RCCL Allgather latency 
using 8 GPUs (4 nodes) on an AMD GPU system.
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• Micro benchmark: 

– OSU Micro-Benchmarks 7.2 for NVIDIA and AMD platforms

– OSU Micro-Benchmarks 7.0 with extended features for Habana platform

• Use Synapse AI Software Suite APIs to support the device buffer on Habana Gaudi

• Application-level benchmark: TensorFlow + Horovod

Evaluation Results
System Component ThetaGPU (ALCF)

NVIDIA
MRI (in-house cluster)

AMD
Voyager (SDSC)

Habana

CPU AMD EPYC 7742 AMD EPYC 7713 Intel Xeon Gold 6336Y

Memory 1 TB DDR4 256 GB DDR4 512 GB DDR4

Sockets 2 2 2

Core/socket 64 64 24

Accelerator/node 8 NVIDIA DGX A100 GPUs 2 AMD MI100 GPUs 8 Habana Gaudi Processors

Device Memory/GPU(HPU) 40GB HBM2 32 GB HDM2 32 GB HDM2
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• Our designs can facility both intra-node and inter-node, blocking and non-blocking point-to-point communication with 
varies collective communication libraries on different platforms

• There is a similar trend of inter-node compared to the results of intra-node numbers.

Micro-Benchmark Evaluation: Point-to-point

0

50

100

150

200

250

300

4 16 64 256 1K 4K

La
te

nc
y 

(u
s)

Message Size (bytes)

xCCL w/NCCL 2.18.3
xCCL w/RCCL 2.16.5
xCCL w/HCCL 1.17.1
xCCL w/MSCCL 0.7.3

0

500

1000

1500

2000

8K 32K 128K 512K 2M

La
te

nc
y 

(u
s)

Message Size (bytes)

xCCL w/NCCL 2.18.3
xCCL w/RCCL 2.16.5
xCCL w/HCCL 1.17.1
xCCL w/MSCCL 0.7.3

100

1000

10000

100000

1000000

8K
16K 32K 64K

128
K

256
K

512
K 1M 2M 4M

Ba
nd

w
id

th
 (M

B/
s)

Message Size (bytes)

xCCL w/NCCL 2.18.3
xCCL w/RCCL 2.16.5
xCCL w/HCCL 1.17.1
xCCL w/MSCCL 0.7.3

100

1000

10000

100000

1000000

8K
16K 32K 64K

128
K

256
K

512
K 1M 2M 4M

Ba
nd

w
id

th
 (M

B/
s)

Message Size (bytes)

xCCL w/NCCL 2.18.3
xCCL w/RCCL 2.16.5
xCCL w/HCCL 1.17.1
xCCL w/MSCCL 0.7.3

0

100

200

300

400

4 16 64 256 1K 4K

La
te

nc
y 

(u
s)

Message Size (bytes)

xCCL w/NCCL 2.18.3
xCCL w/RCCL 2.16.5
xCCL w/HCCL 1.17.1
xCCL w/MSCCL 0.7.3

0

200

400

600

800

1000

8K 32K 128K 512K 2M

La
te

nc
y 

(u
s)

Message Size (bytes)

xCCL w/NCCL 2.18.3
xCCL w/RCCL 2.16.5
xCCL w/HCCL 1.17.1
xCCL w/MSCCL 0.7.3

100

1000

10000

100000

8K
16K 32K 64K

128
K

256
K

512
K 1M 2M 4M

Ba
nd

w
id

th
 (M

B/
s)

Message Size (bytes)

xCCL w/NCCL 2.18.3
xCCL w/RCCL 2.16.5
xCCL w/HCCL 1.17.1
xCCL w/MSCCL 0.7.3

100

1000

10000

100000

8K
16K 32K 64K

128
K

256
K

512
K 1M 2M 4M

Ba
nd

w
id

th
 (M

B/
s)

Message Size (bytes)

xCCL w/NCCL 2.18.3
xCCL w/RCCL 2.16.5
xCCL w/HCCL 1.17.1
xCCL w/MSCCL 0.7.3

Intranode Point-to-Point Latency (Small Message) Intranode Point-to-Point Latency (Large Message) Intranode Point-to-Point Bandwidth Intranode Point-to-Point Bi-Directional Bandwidth

Internode Point-to-Point Latency (Small Message) Internode Point-to-Point Latency (Large Message) Internode Point-to-Point Bandwidth Internode Point-to-Point Bi-Directional Bandwidth



17Network Based Computing Laboratory IPDRM@SC23

• The performance of proposed pure xCCL designs (blue lines) mirrors that of original vendor-specific xCCL (dotted red lines), highlighting 
minimal overhead in our implementation.

• The proposed hybrid xCCL (black lines) achieves even lower small message latency.

• Reduce latencies shrink from 23 to 14 μs for small messages (<8KB) in 1-node case.

• Compared our results to Open MPI + UCX + UCC also reveals our designs’ reduced overhead. 

Micro-Benchmark Evaluation: Collective - NCCL
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• While no RCCL benchmarks exist for AMD architectures, outcomes suggest our designs’ adaptability to new architectures.

• Better performance for small messages (<32KB) with the proposed hybrid designs in both 1-node and 8-node cases. 

Micro-Benchmark Evaluation: Collective - RCCL
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• While no HCCL benchmarks exist for Habana architectures, outcomes suggest our designs’ adaptability to new architectures.

• Observe overheads for small messages, especially at the beginning stage, but mostly good on a single node.

• For Allreduce on multiple nodes, we observe degradations shown by a step curve around 64 bytes.

Micro-Benchmark Evaluation: Collective - HCCL

0
10
20
30
40
50
60
70
80
90

100

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y 

(u
s)

Message Size (bytes)

Proposed xCCL w/
Pure HCCL 1.17.1

Allreduce w/ HCCL (1 Node, 8 HPUs)

0

500

1000

1500

2000

2500

3000

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y 

(u
s)

Message Size (bytes)

Proposed xCCL w/
Pure HCCL 1.17.1

Allreduce w/ HCCL (4 Node, 32 HPUs)



20Network Based Computing Laboratory IPDRM@SC23

• MSCCL uses NCCL 2.12.12 as the backend, we use pure NCCL 2.12.12 as the baseline.

• MSCCL outperforms NCCL for medium messages (256B - 256KB), and our performance mirrors MSCCL.

• The proposed hybrid designs have better performance for small messages (<64B, <1KB) due to hybrid designs. 

Micro-Benchmark Evaluation: Collective - MSCCL
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• Our xCCL designs (with NCCL 2.18.3 or 2.11.4) either match or surpass pure NCCL performance, it achieves 4850 img/sec compared to 
pure NCCL’s 4050 img/sec at batch size 32.

• Traditional MPI runtimes (Open MPI + UCX or advanced designs with UCC) yield 3450 or 4480 img/sec at a batch size of 128, 44% or 
28% below our designs.

• On multiple nodes, xCCL’s 94600 img/sec throughput is 1.35x and 1.5x higher than Open MPI + UCX and UCC with a batch size of 128.

Application-Level Evaluation: NCCL
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• Our xCCL designs achieve a throughput of 3192 img/sec with a batch size of 64 on 8 AMD GPUs, which is a 25% 
improvement over pure RCCL.

• On multiple nodes, it shows a throughput of 7210 img/sec with a batch size of 128 on 16 AMD GPUs, which is a 20% 
improvement over pure RCCL.

Application-Level Evaluation: RCCL
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• On single node, xCCL provides 5139 img/sec throughput with batch size 128, and it is close to the 
throughput of 4936 img/sec using pure HCCL (4% overhead).

• On multiple nodes (4 nodes), both xCCL and pure HCCL reach the throughput of 11300 img/sec where the 
overhead is less than 1% 

• This evaluation proves that our xCCL designs can be easily extended to new architectures and collective 
communication libraries with negligible overheads.

Application-Level Evaluation: HCCL
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• The container image has already contained 
prebuilt Habaha TensorFlow and Horovod.

• The computing kernel is replaced by Habana 
ops through TensorFlow custom ops, the com 
munication layer in Horovod is implemented 
by HCCL directly.

• Modify the Horovod communication by 
replacing all hcclAllreduce calls with 
MPI_Allreduce operations.
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• Our xCCL’s performance with the MSCCL backend, mirroring the NCCL trend, with xCCL achieving 12300 img/sec at 
batch size 128 on 2 nodes.

• This evaluation proves that our xCCL designs can be easily extended to new collective communication libraries with 
negligible overheads.

Application-Level Evaluation: MSCCL
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• Introduction of xCCL communication runtime for optimal communication-level performance in HPC and 
Deep Learning on supercomputers.

• Abstraction layer covering NCCL, RCCL, HCCL, and MSCCL APIs, enabling dynamic selection of hardware-
specific API calls.

• Performance evaluation on ThetaGPU, MRI, and Voyager clusters with NVIDIA GPUs, AMD GPUs, and 
Habana HPUs.

• Comprehensive assessment of intra-node and inter-node communication, as well as collective operations 
across single and multiple GPU nodes using four communication backends.

• Application-level designs achieving substantial throughput gains over UCC and RCCL by 4.6x and 1.25x.

• Pioneering communication-level performance evaluation for upcoming Habana Gaudi Processors.

• Future work aims to extend support to additional hardware such as Intel GPUs or FPGAs and new vendor-
specific libraries like oneCCL.

Conclusion and Future Work



27Network Based Computing Laboratory IPDRM@SC23

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

chen.10252@osu.edu 

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich 

http://nowlab.cse.ohio-state.edu/
mailto:chen.10252@osu.edu
https://twitter.com/mvapich

