
HPC Software
Scaling for ML
using CXL 3.0
GFAM
October 12, 2023
Patrick Estep

2

Content

Machine Learning’s affect on scaling

The Promise of CXL 3.0 Global Fabric Attached
Memory (GFAM)

Results of GFAM as a Scaling Solution

3

Machine Learning’s
Affect on Scaling

4

LLMs break balanced soft scaling

• Traditional High-Performance Computing (HPC) systems
use a balanced soft scaling approach, adjusting the
compute resources to memory ratio based on the
workload.

• This ensures efficient resource use for most applications.

• This approach struggles with Machine Learning (ML)
applications, especially Large Language Model (LLM)
workloads, which demand more memory than compute
resources.

• This imbalance can lead to underutilized compute
resources and excessive data movement, affecting
performance and energy efficiency.

compute

compute

memory

memory

5

AI has hit a
memory wall
• Compute needed to train Transformer

models has been growing at a rate of
750x/2yrs.

• There is an emerging challenge with
training and serving these
models: memory and communication
bottlenecks.
– AI applications are becoming

bottlenecked by intra/inter-chip and
communication across/to AI
accelerators rather than compute.

• LLM model sizes has been increasing
at a rate of 410x every 2 years.

• Large Recommendation System
models have reached O(10) TB
parameters. DRAM memory has only
scaled at a rate of 2x every 2 years. *Source: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall. RiseLab Medium Blog Post, University of Califonia Berkeley, 2021,

March 29.

https://github.com/amirgholami/ai_and_memory_wall/tree/main
https://github.com/amirgholami/ai_and_memory_wall/tree/main

6

Stranded compute
resources
• In this LLM example, the model is

so large that it cannot be efficiently
run on a 2 GPU configuration,
resulting in underutilization of GPU
compute resources.

• CPU offload (e.g., Microsoft’s
ZeRO (Zero Redundancy
Optimizer)) is a technology that
enhances the efficiency of
distributed training for deep-
learning models. It achieves this by
offloading some data from the GPU
to the CPU, enabling larger model
sizes per GPU to be trained.

• The results with GPU + CPU
offloading show complete utilization
of the GPU compute power.

7

The Promise of CXL 3.0 GFAM

8

Where can GFAM help?*

AI/ML Acceleration

• CXL facilitates quicker and more effective connections between the CPU
and devices, as well as the CPU and memory, for AI/ML accelerators like
GPUs, ASICs, or FPGAs. CXL allows applications to process increasingly
larger datasets and minimizes the amount of data transferred between
hosts, reducing the time required to obtain results.

HPC

• CXL enhances HPC performance, scalability, and adaptability by
leveraging CXL-enabled accelerators and shared memory. Multiple
compute nodes can directly access data in memory, eliminating the need
for local duplication before and after operations.

Large-scale in-memory, analytical, and graph databases

• CXL enable systems to handle significantly larger data sets by providing
databases with access to vast amounts of memory that offers low latency
and high bandwidth.

*The focus is on shared memory for this presentation

9

Addressing AI/ML scalability
challenges with GFAM
• Imbalanced memory and compute requirements lead to underutilized

compute resources and excessive data movement, affecting performance
and energy efficiency.
– There is more data to process, even though power budgets are flat or

shrinking.

• The proposed solution to the challenges faced by High-Performance
Computing (HPC) systems is the use of GFAM.

• GFAM allows independent scaling of compute and memory resources,
leading to efficient resource utilization for memory-intensive workloads
like LLMs.

• GFAM also minimizes the need for data movement.
– Prepared data can be left in GFAM in zero-copy formats (e.g., NumPy

Ndarray, pandas DataFrames, etc.)

• However, adopting GFAM requires strategic placement of memory and
compute resources and potential software stack adjustments.

Host 1 Host 2 Host 3 Host n

Aggregate memory footprint

memory memory memory memory

Host 1 Host 2

CXL GFAM memory footprint

Large # of compute resources to achieve required total memory

Memory size independent of # of compute resources

10

Changes in memory
and compute
placement

Motivation for Near Memory
Compute (NMC)
• Leverage excess disaggregated

memory bandwidth to reduce
application time-to-solution

• Reduce data transferred to host
systems
– Less fabric cost / energy

consumption

• NMC on local memory
– Reduce memory access latency

Higher
Aggregate
Memory

Bandwidth

Lower
Aggregate
Processor
Bandwidth

2-10x Excess
Memory Bandwidth

. . .

. . .

DRAM DRA DRAMDRAM

CXL

NMC

CXL

DRAM

CXL

NMC

CXL

DRAM

CXL

NMC

CXL

DRAM

CXL

NMC

CXL

11

HPC software
stacks + GFAM
• The larger memory footprint

achievable with GFAM makes it
possible to leave large datasets in
memory

• In-GFAM data in a zero-copy
format (e.g., NumPy ndarray,
pandas DataFrame) eliminates
serialization/deserialization

• This provides:
– Improved scalability
– Fastest Time To Insight (TTI)
– Lowest compute requirements
– Fewest data movements
– Lowest energy consumption

One-sided models can be
easily adapted to
leverage GFAM

MPI
OpenSHMEM

Announced software
stacks leveraging GFAM

MemVerge: Project Gismo
extends Ray’s zero-copy-
memory-centric
architecture across
multiple server instances
using GFAM

An incomplete list of
shared memory models
that could be modified to
leverage GFAM

• OpenMP (offload)
• Chapel (global view data

structures)
• UPC/UPC++ (global

address space)
• Kokkos (DSM)
• Boost (interprocess shared

memory object)

12

What about
coherency?
• CXL 3.0 supports both

hardware- and software-based
coherency for shared memory

• For small systems hardware
coherency is feasible

• For large systems general
hardware coherency is not
feasible
– Smaller islands of coherency

as a possible mitigation

• CXL features implemented by
vendors are driven by use
cases

• Vendors will likely start with
software coherency

CXL Switch

CXL memory
module

Shared Region

Shared Region

Host 1

SR copy

Host 2

SR copy

SR copy

Host 3

SR copyHost cache

13

• The OpenMP target construct allows for
code regions to be executed on a device
and to support multiple devices, device
teams, and device synchronization

• Micron has modified the LLVM compiler
to enable executions of code regions on
multiple x86 servers

• This modified compiler uses CXL GFAM
to share memory which eliminates the
need to copy data between servers

• Requires modification/addition of
OpenMP target pragmas and
omp_target_alloc() followed by
recompilation.

OpenMP offload to server + GFAMOpenMP offload to GPU

server 2server 1

CPU CPU

GFAM

GPUserver

main
memory

CPU

GPU
memory

GPU
compute

Scaling out OpenMP
applications using
CXL GFAM

14

Tokenization leveraging GFAM provides maximum parallelization
opportunities. Bandwidth usage is minimized with in-FAM
memory object creation/consumption.

Near-memory compute capabilities facilitate further optimization
• Shard input text files onto separate NMC devices
• In-GFAM token creation entirely within a NMC device

LLM Tokenization
In-GFAM object creation/consumption scales to
multiple servers, requires single transformation

GPGPU

Training,
fine tune,
inference

Host 1

In-memory
sampledataloader

Merged MDS file

Compressed
MDS file

Web-scraped
text files

tokenizer

MDS shard files
Serial LLM tokenization

GPGPU

Training,
fine tune,
inference

Host 1

In-memory
sampledataloader

Merged MDS file

Compressed
MDS file

Web-scraped
text files

tokenizer

MDS shard files

Merged MDS file

Compressed
MDS file

Web-scraped
text files

tokenizer

MDS shard files
Parallel LLM tokenization

GPGPU

Training,
fine tune,
inference

Host 1

dataloader

Web-scraped
text files

tokenizer

Web-scraped
text files

tokenizer

Host 2

Web-scraped
text files

tokenizer

In-FAM byte-pair
encoded tokens

In-FAM byte-pair
encoded tokens

In-FAM byte-pair
encoded tokens

Ptr to GFAM
object
(GPU direct)

GPGPU

Training,
fine tune,
inference

Host 1

dataloader
Ptr to GFAM object

(GPU direct)

NMC 1

Web-scraped
text files

In-FAM byte-pair
encoded tokens tokenizer

NMC 2

Web-scraped
text files

In-FAM byte-pair
encoded tokens tokenizer

NMC 3

Web-scraped
text files

In-FAM byte-pair
encoded tokens tokenizer

Tokenization leveraging GFAM provides maximum parallelization
opportunities. Bandwidth usage is minimized with in-FAM
memory object creation/consumption.

Hugging Face GPT-NeoX tokenizer and c4 dataset
• 1024 files, 770GB
• Tokenization scaleup limited by memory requirements

• ~175GB per tokenizer

15

Results of GFAM as a
Scaling Solution

16

Demonstration
platform

XCONN’s CXL 2.0 Switch

CXL 1.1
Server

CXL 1.1
Server

Micron is producing a series
of FPGA based prototype
hardware platforms that
model Micron’s memory
centric architecture (via
partnership with PNNL)

First platform was delivered
mid 2023 (2 host with shared
memory)

17

CXL FAM Scaling
Demonstration
The benefit of splitting
computationally bound
applications across multiple
servers has been limited by the
overhead of copying data.

Using shared CXL FAM (zero-
copy, modify-in-place) provides
the utility of shared DRAM while
enabling computational scale out
across servers.

The shared CXL FAM approach
also facilitates scale out using
domain specific accelerators
(e.g., image scaler)

Example with a typical ML image preprocessing pipeline python script

0

100

200

300

400

500

600

700

1 2 3 4

im
ag

es
/s

ec
on

d

resizers

image preprocessing rate
as a function of # of resizers

original script 1host-DRAM 2host-OOB 2host-FAM

18

Scale-out OpenMP
applications using
CXL GFAM

Results shown for 3
configurations

• 4teams-1host: 4 teams of 32
threads each run on a single
x86 server

• 8teams-1host: 8 teams of 32
threads each run on a single
x86 server

• 4teams-2hosts: 4 teams of 32
threads run on two x86 servers,
data shared between servers
using CXL GFAM

Example OpenMP dot product test, modify pragmas to scale loops
out across servers using CXL GFAM

0

2

4

6

8

10

12

4teams-1host 8teams-1host 4teams-2hosts

ru
nt

im
e

in
 m

in
ut

es

dot product parallelized with OpenMP

19

Using tokenized data
Larger memory footprint enabled by
GFAM enables a better solution by
leaving data in memory

Leaving tokenized data in GFAM in a
zero-copy format (NumPy Ndarrays)
eliminates serialization/deserialization.

• Fastest Time To Insight (TTI)

• Lowest CPU requirements

• Lowest network and CXL
congestion

• Lowest energy consumption

The time to retrieve the data and place
it in a torch tensor is represented by
read

For approaches that aren’t kept in
GFAM, the time to write to a file is also
shown

Results with a small input data (30 files from Google’s C4 dataset)

20

A shameless plug for our demonstration J

© 2023 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided
on an “AS IS” basis without warranties of any kind. Statements regarding products, including statements regarding product features, availability, functionality,
or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale.
Micron, the Micron logo, and other Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

