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Machine Learning’s 
Affect on Scaling
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LLMs break balanced soft scaling

• Traditional High-Performance Computing (HPC) systems 
use a balanced soft scaling approach, adjusting the 
compute resources to memory ratio based on the 
workload.

• This ensures efficient resource use for most applications.

• This approach struggles with Machine Learning (ML) 
applications, especially Large Language Model (LLM) 
workloads, which demand more memory than compute 
resources.

• This imbalance can lead to underutilized compute 
resources and excessive data movement, affecting 
performance and energy efficiency.

compute

compute

memory

memory
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AI has hit a 
memory wall
• Compute needed to train Transformer 

models has been growing at a rate of 
750x/2yrs. 

• There is an emerging challenge with 
training and serving these 
models: memory and communication 
bottlenecks.
– AI applications are becoming 

bottlenecked by intra/inter-chip and 
communication across/to AI 
accelerators rather than compute.

• LLM model sizes has been increasing 
at a rate of 410x every 2 years.

• Large Recommendation System 
models have reached O(10) TB 
parameters. DRAM memory has only 
scaled at a rate of 2x every 2 years. *Source: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall. RiseLab Medium Blog Post, University of Califonia Berkeley, 2021, 

March 29.

https://github.com/amirgholami/ai_and_memory_wall/tree/main
https://github.com/amirgholami/ai_and_memory_wall/tree/main
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Stranded compute 
resources
• In this LLM example, the model is 

so large that it cannot be efficiently 
run on a 2 GPU configuration, 
resulting in underutilization of GPU 
compute resources.

• CPU offload (e.g., Microsoft’s 
ZeRO (Zero Redundancy 
Optimizer)) is a technology that 
enhances the efficiency of 
distributed training for deep-
learning models. It achieves this by 
offloading some data from the GPU 
to the CPU, enabling larger model 
sizes per GPU to be trained.

• The results with GPU + CPU 
offloading show complete utilization 
of the GPU compute power.
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The Promise of CXL 3.0 GFAM
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Where can GFAM help?*

AI/ML Acceleration

• CXL facilitates quicker and more effective connections between the CPU 
and devices, as well as the CPU and memory, for AI/ML accelerators like 
GPUs, ASICs, or FPGAs. CXL allows applications to process increasingly 
larger datasets and minimizes the amount of data transferred between 
hosts, reducing the time required to obtain results.

HPC

• CXL enhances HPC performance, scalability, and adaptability by 
leveraging CXL-enabled accelerators and shared memory. Multiple 
compute nodes can directly access data in memory, eliminating the need 
for local duplication before and after operations.

Large-scale in-memory, analytical, and graph databases

• CXL enable systems to handle significantly larger data sets by providing 
databases with access to vast amounts of memory that offers low latency 
and high bandwidth.

*The focus is on shared memory for this presentation
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Addressing AI/ML scalability 
challenges with GFAM
• Imbalanced memory and compute requirements lead to underutilized 

compute resources and excessive data movement, affecting performance 
and energy efficiency.
– There is more data to process, even though power budgets are flat or 

shrinking.

• The proposed solution to the challenges faced by High-Performance 
Computing (HPC) systems is the use of GFAM.

• GFAM allows independent scaling of compute and memory resources, 
leading to efficient resource utilization for memory-intensive workloads 
like LLMs.

• GFAM also minimizes the need for data movement.
– Prepared data can be left in GFAM in zero-copy formats (e.g., NumPy 

Ndarray, pandas DataFrames, etc.)

• However, adopting GFAM requires strategic placement of memory and 
compute resources and potential software stack adjustments.

Host 1 Host 2 Host 3 Host n

Aggregate memory footprint

memory memory memory memory

Host 1 Host 2

CXL GFAM memory footprint

Large # of compute resources to achieve required total memory

Memory size independent of # of compute resources
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Changes in memory 
and compute 
placement

Motivation for Near Memory 
Compute (NMC)
• Leverage excess disaggregated 

memory bandwidth to reduce 
application time-to-solution

• Reduce data transferred to host 
systems
– Less fabric cost / energy 

consumption

• NMC on local memory
– Reduce memory access latency

Higher
Aggregate
Memory

Bandwidth

Lower
Aggregate
Processor
Bandwidth

2-10x Excess 
Memory Bandwidth

. . .

. . .

DRAM DRA DRAMDRAM

CXL

NMC

CXL

DRAM

CXL
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CXL

DRAM

CXL

NMC

CXL

DRAM

CXL

NMC
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HPC software 
stacks + GFAM
• The larger memory footprint 

achievable with GFAM makes it 
possible to leave large datasets in 
memory

• In-GFAM data in a zero-copy 
format (e.g., NumPy ndarray, 
pandas DataFrame) eliminates 
serialization/deserialization

• This provides:
– Improved scalability
– Fastest Time To Insight (TTI)
– Lowest compute requirements
– Fewest data movements
– Lowest energy consumption

One-sided models can be 
easily adapted to 
leverage GFAM

MPI
OpenSHMEM

Announced software 
stacks leveraging GFAM

MemVerge: Project Gismo 
extends Ray’s zero-copy-
memory-centric 
architecture across 
multiple server instances 
using GFAM

An incomplete list of 
shared memory models 
that could be modified to 
leverage GFAM

• OpenMP (offload)
• Chapel (global view data 

structures)
• UPC/UPC++ (global 

address space)
• Kokkos (DSM)
• Boost (interprocess shared 

memory object)
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What about 
coherency?
• CXL 3.0 supports both 

hardware- and software-based 
coherency for shared memory

• For small systems hardware 
coherency is feasible

• For large systems general 
hardware coherency is not 
feasible
– Smaller islands of coherency 

as a possible mitigation

• CXL features implemented by 
vendors are driven by use 
cases

• Vendors will likely start with 
software coherency

CXL Switch

CXL memory 
module

Shared Region

Shared Region

Host 1

SR copy

Host 2

SR copy

SR copy

Host 3

SR copyHost cache                          
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• The OpenMP target construct allows for 
code regions to be executed on a device 
and to support multiple devices, device 
teams, and device synchronization

• Micron has modified the LLVM compiler 
to enable executions of code regions on 
multiple x86 servers

• This modified compiler uses CXL GFAM 
to share memory which eliminates the 
need to copy data between servers

• Requires modification/addition of 
OpenMP target pragmas and 
omp_target_alloc() followed by 
recompilation.

OpenMP offload to server + GFAMOpenMP offload to GPU

server 2server 1

CPU CPU

GFAM

GPUserver

main 
memory

CPU

GPU 
memory

GPU 
compute

Scaling out OpenMP 
applications using 
CXL GFAM
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Tokenization leveraging GFAM provides maximum parallelization 
opportunities. Bandwidth usage is minimized with in-FAM 
memory object creation/consumption.

Near-memory compute capabilities facilitate further optimization
• Shard input text files onto separate NMC devices
• In-GFAM token creation entirely within a NMC device

LLM Tokenization
In-GFAM object creation/consumption scales to 
multiple servers, requires single transformation

GPGPU

Training,
fine tune,
inference

Host 1

In-memory 
sampledataloader

Merged MDS file

Compressed 
MDS file

Web-scraped
text files

tokenizer

MDS shard files
Serial LLM tokenization

GPGPU

Training,
fine tune,
inference

Host 1

In-memory 
sampledataloader

Merged MDS file

Compressed 
MDS file

Web-scraped
text files

tokenizer

MDS shard files

Merged MDS file

Compressed 
MDS file

Web-scraped
text files

tokenizer

MDS shard files
Parallel LLM tokenization

GPGPU

Training,
fine tune,
inference

Host 1

dataloader

Web-scraped
text files

tokenizer

Web-scraped
text files

tokenizer

Host 2

Web-scraped
text files

tokenizer

In-FAM byte-pair 
encoded tokens

In-FAM byte-pair 
encoded tokens

In-FAM byte-pair 
encoded tokens

Ptr to GFAM 
object
(GPU direct)

GPGPU

Training,
fine tune,
inference

Host 1

dataloader
Ptr to GFAM object

(GPU direct)

NMC 1

Web-scraped
text files

In-FAM byte-pair 
encoded tokens tokenizer

NMC 2

Web-scraped
text files

In-FAM byte-pair 
encoded tokens tokenizer

NMC 3

Web-scraped
text files

In-FAM byte-pair 
encoded tokens tokenizer

Tokenization leveraging GFAM provides maximum parallelization 
opportunities. Bandwidth usage is minimized with in-FAM 
memory object creation/consumption.

Hugging Face GPT-NeoX tokenizer and c4 dataset
• 1024 files, 770GB
• Tokenization scaleup limited by memory requirements

• ~175GB per tokenizer
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Results of GFAM as a 
Scaling Solution
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Demonstration 
platform

XCONN’s CXL 2.0 Switch

CXL 1.1 
Server

CXL 1.1 
Server

Micron is producing a series 
of FPGA based prototype 
hardware platforms that 
model Micron’s memory 
centric architecture (via 
partnership with PNNL)

First platform was delivered 
mid 2023 (2 host with shared 
memory)
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CXL FAM Scaling 
Demonstration
The benefit of splitting 
computationally bound 
applications across multiple 
servers has been limited by the 
overhead of copying data.

Using shared CXL FAM (zero-
copy, modify-in-place) provides 
the utility of shared DRAM while 
enabling computational scale out 
across servers.

The shared CXL FAM approach 
also facilitates scale out using 
domain specific accelerators 
(e.g., image scaler)

Example with a typical ML image preprocessing pipeline python script
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Scale-out OpenMP 
applications using 
CXL GFAM

Results shown for 3 
configurations

• 4teams-1host: 4 teams of 32 
threads each run on a single 
x86 server

• 8teams-1host: 8 teams of 32 
threads each run on a single 
x86 server

• 4teams-2hosts: 4 teams of 32 
threads run on two x86 servers, 
data shared between servers 
using CXL GFAM 

Example OpenMP dot product test, modify pragmas to scale loops 
out across servers using CXL GFAM
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Using tokenized data
Larger memory footprint enabled by 
GFAM enables a better solution by 
leaving data in memory

Leaving tokenized data in GFAM in a 
zero-copy format (NumPy Ndarrays) 
eliminates serialization/deserialization.

• Fastest Time To Insight (TTI)

• Lowest CPU requirements

• Lowest network and CXL 
congestion

• Lowest energy consumption

The time to retrieve the data and place 
it in a torch tensor is represented by 
read

For approaches that aren’t kept in 
GFAM, the time to write to a file is also 
shown

Results with a small input data (30 files from Google’s C4 dataset)
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A shameless plug for our demonstration J
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