
The Sequential Codelet Model & 
Data-Centric Codesign

Dawson Fox, Jose Monsalve Diaz, Xiaoming Li

1



Implementation Objectives

3



Objective: HW Implementation of PXMs

● Program Execution Models 
(PXMs)

● “formal specification of the 
application program interface 
(API) of the computer 
system”

● System-wide agreement 
between hardware and 
software

● HW-SW Codesign

4



Objective: Design Sequential Codelet Model HW Support

● Codelets are bits of sequentially-
executed, non-preemptive, side-
effect free code

● Sequentially written programs 
containing Codelets and control 
flow instructions

● Intended to be fine-grained with 
strong input/output definitions

● The Scheduler Unit (SU) schedules 
Codelets to Compute Units (CU) as 
dependencies are fulfilled 5



Objective: Address MCU Challenges

● Memory Codelet Unit (MCU) -
dedicated execution unit for 
Memory Codelets

● Fast-data-transform 
programmable PNM hardware 
unit

● Mem. Codelets are data-centric 
operations; encapsulate data into 
registers

● Perform data movements and 
preprocessing/recode operations

● Leverage gem5 to explore 
heterogeneity

6



Motivating Examples: Why bother with 
this implementation?

7



Motivating Example 1: DARTS Signaling Overhead

if(sync_.decCounter())
{

if(myTP_)
myTP_->incRef();

if(myThread.threadMCsched)
{

if(myThread.threadMCsched->getLocal())
{

if(myThread.threadMCsched->pushLocal(this))
return;

}
}
myThread.threadTPsched->pushCodelet(this);

}

myTP->toSignal->decDep()

Problems?

8



Motivating Example 1: DARTS Signaling Overhead

if(sync_.decCounter())
{

if(myTP_)
myTP_->incRef();

if(myThread.threadMCsched)
{

if(myThread.threadMCsched->getLocal())
{

if(myThread.threadMCsched->pushLocal(this))
return;

}
}
myThread.threadTPsched->pushCodelet(this);

}

myTP->toSignal->decDep()

Pointer
Dereferencing

9



Motivating Example 1: DARTS Signaling Overhead

if(sync_.decCounter())
{

if(myTP_)
myTP_->incRef();

if(myThread.threadMCsched)
{

if(myThread.threadMCsched->getLocal())
{

if(myThread.threadMCsched->pushLocal(this))
return;

}
}
myThread.threadTPsched->pushCodelet(this);

}

myTP->toSignal->decDep()

Multiple 
branches

10



Motivating Example 1: DARTS Signaling Overhead

if(sync_.decCounter())
{

if(myTP_)
myTP_->incRef();

if(myThread.threadMCsched)
{

if(myThread.threadMCsched->getLocal())
{

if(myThread.threadMCsched->pushLocal(this))
return;

}
}
myThread.threadTPsched->pushCodelet(this);

}

myTP->toSignal->decDep()

Multiple 
function calls

11



Motivating Example 2: Tasking Models
● Software only
● Very heavy implementations:

○ OpenMP LLVM kmp_tasking.cpp: > 4000 lines of code
● No direct hardware support
● Victim of the target architecture

12



Motivating Example 3: Traditional Memory Hierarchy

● Data’s physical location in the system is 
ambiguous

● Caches provide benefits only for a certain 
type of memory access patterns

● Penalties for cache invalidation
● Issues with streaming

○ Software FIFOs equally ambiguous
○ Incurs software-based synchronization 

overheads (locks & atomic mem. accesses)
○ Tied to cache line size

● Bandwidth / latency bound applications

Where’s the data?
13



The gem5 Codelet Model 
Implementation

14



High level diagram of a target Codelet-based system (purple = implemented)
15



High level diagram of a target Codelet-based system (purple = implemented)
16



Codelet Interface turns conventional core in to Codelet CU
17



High level diagram of a target Codelet-based system (purple = implemented)
18



High level diagram of a target Codelet-based system
19



SU executes SCM Program and schedules Codelets
20



CU Runtime Software
● Hardware implementation of Codelet Interface allows software 

runtime to be minimal
● Loop reads Codelet data and calls its fire function
● Runtime is compiled with user-defined fire functions for each Codelet



Preliminary Results
● Microbenchmark executing 

sequential chain of empty 
Codelets

● Effectively measures 
scheduling/signaling overhead

● Compared to DARTS (software 
implementation of Codelet
Model)

● DARTS incurs ~21x higher 
overhead per Codelet than SCM 
in gem5



Continuing Implementation & Future Work

23



High level diagram of a target Codelet-based system



Memory Codelet Unit (MCU)
● Special CU to Execute Memory 

Codelets
● Contains multiple hardware threads
● Executes Memory Codelets

○ Emphasis on smart data movement, 
prefetching, streaming

○ Preprocessing / recode operations, 
Extract-Transform-Load

● Fast Data Transform arch.
○ Fast branching
○ Low latency data transformation
○ Parallel computation
○ Local scratchpad mem. and 

streaming

25



High level diagram of a target Codelet-based system
26



Data Queues
● Hardware FIFOs to allow for Streaming 

Codelets
● Connected to CUs through Codelet Bus
● Streaming Codelets:

○ Stream data from memory or 
producer Streaming Codelet during 
execution

○ Different dependency requirements
● Queue abstraction managed by SU
● Open questions: element size, queue 

length, management strategies

27



How is SCM data centric?
● Restriction:

○ Only allow compute Codelets to access SCM registers
○ SCM registers have fixed size and location
○ Codelets have defined read/write access to registers

● Encapsulation:
○ Memory Codelets guarantee data locality through the MCU prior to computation
○ Decompression, scatter-gather, transformation, reorganization
○ Load data into SCM registers in a beneficial structure

● Data Movement:
○ Prefetching through MCU
○ Streaming between MCU, CUs, FIFO data queues
○ Recoding operations

● Under software control!



Conclusion
● Implementation of hardware features of PXMs
● Reduce overhead of PXM
● Relatively architecture agnostic (support heterogeneity)
● Provide alternative memory system structures and expand software memory 

interface
● Implement MCU, scratchpad memory, data queues

Dawson Fox Jose Monsalve Diaz Xiaoming Li

dawsfox@udel.edu / dfox@anl.gov – jmonsalvediaz@anl.gov – xli@udel.edu

29

mailto:dawsfox@udel.edu
mailto:dfox@anl.gov
mailto:jmonsalvediaz@anl.gov
mailto:xli@udel.edu


Acknowledgement

This research used resources at the Argonne 
Leadership Computing Facility, a DOE Office of 
Science User Facility supported under Contract DE-
AC02-06CH11357. This research was also supported 
by the Exascale Computing Project (17-SC-20-SC), a 
collaborative effort of the U.S. Department of Energy 
Office of Science and the National Nuclear Security 
Administration.



References and Additional Information
gem5 Codelet Model implementation: https://github.com/dawsfox/gem5_cod/tree/codelet

More on streaming in the Codelet Model:
Siddhisanket Raskar. 2021. Dataflow software pipelining for codelet model using hardware-software co-design. Ph. D. 
Dissertation. University of Delaware.

More on Memory Codelets:
https://doi.org/10.48550/arXiv.2302.00115 On Memory Codelets: Prefetching, Recoding, Moving and Streaming Data

More on DARTS / the Codelet Model:
J. Suettlerlein, S. Zuckerman, and G. R. Gao, “An implementation of the codelet model,” in Euro-Par 2013 Parallel 
Processing, F. Wolf, B. Mohr, and D. an Mey, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 633–644.

More on PXMs:
J. Dennis, “A parallel program execution model supporting modular software construction,” in 3rd Working Conf. on 
Massively Parallel Programming Models, Nov. 1997, pp. 50–60.

31

https://github.com/dawsfox/gem5_cod/tree/codelet
https://doi.org/10.48550/arXiv.2302.00115


High level diagram of a target Codelet-based system
32



33






